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Abstract—Regular expressions and finite state automata have
been widely used in programs for pattern searching and string
matching. Unfortunately, despite the popularity, regular expres-
sions are difficult to understand and verify even for experi-
enced programmers. Conventional testing techniques remain a
challenge as large regular expressions are constantly used for
security purposes such as input validation and network intrusion
detection. In this paper, we present a lightweight verification
framework for regular expressions. In this framework, instead
of a large number of test cases, it takes in requirements in
natural language descriptions to automatically synthesize formal
specifications. By checking the equivalence between the synthe-
sized specifications and target regular expressions, errors will be
detected and counterexamples will be reported. We have built a
web application prototype and demonstrated its usability with
two case studies.

Index Terms—regular expression, verification, natural lan-
guage, formal specification, domain-specific language

I. INTRODUCTION

Regular expressions are widely used in computer programs

for pattern searching and string matching due to the high ef-

fectiveness and accuracy. A recent technical report shows that

regular expressions are used in 42% among nearly 4,000 open-

sourced Python projects [1]. Researchers have also explored

applying regular expressions to test case generations [2], [3],

[4], [5], specifications for string constraint solvers [6], [7], and

queries for some data mining framework [8]. As a foundation

for lexical analysis, regular expression (regex) has been further

applied to advanced functions for security purposes, such as

input validation [9] and network intrusion detection [10]. De-

spite its popularity, it is still considered complicated for users,

even experienced programmers, due to the low readability and

the hardness to construct correct regular expressions when the

size is as large as a single-page document. Because of the

gradually increasing adoptions of agile software development,

requirements and solutions evolve quickly, which causes the

software development more error-prone. In this situation, input

validations using regular expressions are constantly being

found inefficient due to errors in the constructed expressions,

resulting in security vulnerabilities [11], [12].

Due in part to the shared use across software development

and how susceptible regexes are to errors, many researchers

and practitioners have developed tools to support more robust

regular expression creation [12] or allow more comprehensible

verification. To verify the correctness of regular expressions,

testing is widely adopted. These techniques solve the problem

to some extent but are far from sufficient. Assisted with

various online and offline tools, e.g., regex101 [13], developers

can find errors in regular expressions through test cases.

However, this kind of heavyweight frameworks increases their

cognitive load to understand both the requirements and the

corresponding regular expressions and require a significant

amount of human labor to build test suites. In addition, it

is difficult to determine the test coverage of self-generated

test cases, especially for negative test cases and those for

the Kleene star operator. Another critical issue which makes

regular expression verification special is that developers are

usually the testers, especially when agile development is

popular in today’s industries. They implement and mostly test

a regular expression in the way that it should handle, which

unintentionally avoid testing their target in a way that might

break.

Alternative assistance is also proposed for regular expres-

sion debugging, such as visualization techniques [14], [15].

By parsing target regular expressions and representing them

in Finite State Machines, it makes the semantics of these

complex expressions more understandable. These methods

save human labor from composing test cases and increase the

readability despite the expressions without clear demarcation,

but they overlook the complexity of regular expressions, some

of which can be over twenty lines of code. The corresponding

visualized automata can be gigantic and complex for users to

comprehend. Therefore, the verification task remains difficult.

One may attempt to solve this problem with software veri-

fication. However, the regular expression verification problem

is ironic. The regular languages are in the simplest language

family in the formal language classification [16], while the

software specifications are typically written in a more expres-

sive or powerful language, e.g., first-order logic. Therefore it

is paradoxical we need to write the specification in a more

complicated language, which presumably will lead to more

error in the specification than in the program (regex).

In this study, we are interested in enabling regular ex-

pression verification with natural language descriptions. We

present a novel lightweight framework that compiles require-

ments in natural language into domain-specific formal speci-

fications that we defined and checks the consistency between

formal specifications and corresponding regular expressions

using equivalence checking. Incorrect regular expressions will

be detected when inequivalence is found and then, counterex-

amples will be synthesized. We propose this method to answer

the following questions:



• RQ1: How to verify the properties stated in the require-

ments for regular expressions?

We propose a domain-specific specification language

called Natural Expression with which we model the

requirements into automata and based on equivalence

checking, we can verify the formally specified properties

on regular expressions.

• RQ2: How to lower the entrance bar for end-users to

compose the formal specifications?

We propose a specification synthesis method with a

rule-based natural language processing (NLP) technique.

By analyzing the natural language requirements with

additional user clarifications, formal specifications are

generated automatically.

In the following part of the paper, motivated by a practical

example which demonstrates the high cost of testing and

conventional verification methods, we propose a lightweight

verification method for validating regular expressions in Sec-

tion II. Details about the design and techniques are presented

in Section III. We describe the prototype tool (free access

online and open-sourced) for the proposed framework in

Section IV and we explain how our framework can help

users to detect security vulnerabilities in two case studies in

Section V. We discuss our contributions and limitations in

Section VI. We review existing methods on regular expressions

testing and verification and present a comparative summary in

Section VII. We draw the conclusions in Section VIII.

II. MOTIVATING EXAMPLE

Regular expressions are widely used in software industries

for input validation and pattern matching, but it is still a

tough job to validate a regular expression according to its

requirements. Consider the following regular expression:

c*(a(ab)*b)d*

The requirement is informally stated as:

There is a block of consecutive positions X such that: before

X there are only c’s; after X there are only d’s; in X , b’s
and a’s alternate; the first letter in X is an a and the last

letter is b.
To verify this regular expression, a test suite can be constructed

as follows:

my @tests = (

"cccab", "ecabd", "12eac",

"cababd", "abd", "ccabd"

);

This is a test suite which covers three positive test cases

(“cababd”, “abd”, and “ccabd”) and three negative ones

(“cccab”, “ecabd”, “12eac”). Testing requires a considerable

amount of human labor and expertise to build complete test

suites. In another word, few testers will guarantee their test

cases cover all the properties as required. Also, it is hard to

determine the test coverage, especially for negative test cases

and those for testing Kleene stars.

Using first-order logic (FOL) for software verification cre-

ates a systematic way to conservatively prove the correctness

of a piece of program if we define a language to describe

its properties, such as using the membership predicate. By

introducing the atomic predicate Qa(x), where a is a character

and x ranges over the positions of the word. In order to express

the relations between positions, we add the syntax x < y
with the semantics “position x is smaller than position y”. We

can prove that a language over a one-letter alphabet is FO-

definable if and only if it is finite or co-finite, where co-finite

means the complement of this language is finite. However,

simple expressions like {An|n is even} is not FO-definable.

Therefore, people usually extend the verification language with

variables X,Y, Z, ... ranging over sets of positions and the

newly introduced predicate x ∈ X means that “position x
belongs to the position set X”. And generalize the logic to

the set of formulas over Σ with the expressions:

ϕ := Qa(x) | x < y | x ∈ X | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Xϕ.

Therefore, it empowers the verifier to verify properties for the

target regular expression with the following specifications:

Make(X) := ∀x ∈ X ∀y ∈ X

(x < y → (∀z (x < z ∧ z < y)→ z ∈ X))

Before(x,X) := ∀y ∈ X x < y

After(x,X) := ∀y ∈ X y < x

Before c(X) := ∀x Before(x,X)→ Qc(x)

After d(X) := ∀x After(x,X)→ Qd(x)

Alternate(X) := ∀x ∈ X(Qa → ∀y ∈ X(y = x+ 1→ Qb(y)))

∧X(Qb → ∀y ∈ X(y = x+ 1→ Qa(y)))

First a(X) := ∀x ∈ X ∀y (y < x→ ¬y ∈ X)→ Qa(x)

Last b(X) := ∀x ∈ X ∀y (y > x→ ¬y ∈ X)→ Qa(x)

And by putting them together, we have

∃X. (Make(X) ∧ Before c(X) ∧ After d(X)

∧ Alternate(X) ∧ First a(X) ∧ Last b(X))

for abstract the requirements.

Observing the specifications, although the logic behind is

clear, it is not designed for light-trained end-users or even

engineers. In our study, we consider using another specifi-

cation language can be an overkill for solving this problem.

We propose a method relies on a regex-like specification

language and we validate the target regular expression with

equivalence checking. The tool works on target examples with

the following specifications:

my@spec = (

letX ← [a|b]∗, // in X, b’s and a’s alternate

X ← (? = a. ∗ b) in e; // in X, begin in a end in b

let e← (? = c ∗X.∗), // there are only c’s before X

e← (? = . ∗Xd∗) in S; // there are only d’s after X

);

With these regex-like specifications, we will convert it into

automata and conduct equivalence checking on this specifi-

cation automata and target regex converted automata. If they

are equivalent, we will consider the target correct; otherwise,

we report error as either one of them is problematic. The

specifications can be more complicated for a larger regular











such as “start with” and “followed by”. By partitioning the

sentence with the assistance of the keywords, requirements

are separated into small pieces, each of which only con-

tains one property of the target regular expression. Since

the requirements are described continuously, specifications are

synthesized one by one accumulatively:

S1: ˆ<OBJECT$ it starts with “<OBJECT”
S2: S1 + \s+$ then a few whitespaces
S3: S2 + (ˆ>)$ next character cannot be “>”
S4: S3 + ˆclassid$ following that is “classid”
S5: S4 + \s*$ maybe some space after it
S6: S5 + =$ and “=”
S7: S6 + \s$ maybe another space here
S8: S7 + [\x22\x27]$ then an optional “’” or “"”
S9: S8 + \s*$ then we have some whitepace
S10: S9 + clsid$ and “clsid”
S11: S10 + \s*$ and maybe some whitepace
S12: S11 + \x3a$ followed by a “:”
S13: S12 + \s*$ After is some optional spaces
S14: S13 + /A105B.../ followed by the exact id “A105B...”

Since the specifications are built up accumulatively, the last

specification, S14 contains all the properties that specified in

the previous ones. With the synthesized specifications, the

system will check the equivalence between the target regular

expression and the requirements. In this case, system returns

Verified.

VI. DISCUSSION

In software development, verification enforces consistency

between the current development phase of a software and

the initial requirements. However, formal specifications and

analysis are often very expensive that requires highly qualified

engineers. We propose a conceptual framework to assist with

verifying the correctness of general software developments

according to their requirements; and we instantiate the concep-

tual framework with a specific application, regular expression

verification, to verify its efficiency and usability.

In typical software verification researches, more powerful

languages such as VDM [27] and Z [28] are often used for

formal specification. But in our study, regular expressions are

simple enough that using these specification languages is an

overkill. To verify the correctness of a regular expression,

we can specify it in a regular language. Then if we have

a specification in a regular language, we have a regular

expression already. For an existing regular expression, we

would like to avoid a user to write a specification in a regular

language or more powerful language. Instead, the user can

just tell in natural language what the regular expression should

do, which is sort of software requirement, and then we will

generate the specification and check the conformance between

the implementation (the existing regular expression) and spec-

ification (the synthesized regular expression) automatically.

We not only propose a new approach but also solve

the problem of regex verification. It’s new because it’s the

first preliminary work that proposes to use natural language

to validate regex. Typical specification languages are more

powerful, or in other words, more complicated than regular

languages. So verification of a regex using a specification

in such languages is overkill and potentially makes things

unnecessarily complicated. But if we simply create another

regex according to requirements to act as the specification,

and we’ll simply need to check the equivalence. However, this

solution overlooks the complexity of regular expressions.

There are still some limitations of the current prototype.

The biggest issue is the accuracy of specification synthesis.

Although we have achieved a relatively high accuracy, it is

still the bottleneck for our framework. In our lab study, to

exclude the interferes with the incorrect specification syn-

thesis, researchers interrupted when they noticed any errors

in the requirement descriptions or synthesis outcome and

we conclude with a higher efficiency compared with the

conventional testing method. Additionally, rule-based methods

are not as scalable as statistical-based methods that the former

ones consume more human labor. It is our goal to explore

more on the formal specification synthesis and improve the

performance in the future study.

VII. RELATED WORK

In this section, we summarize related studies regarding our

motivation and corresponding techniques.

A. Regex testing and verification

To verify the correctness of regular expressions, proposed

approaches in previous studies focus on testing and debugging

methods, which solve the problem to some extent but are far

from sufficient. Black-box testing is mostly adopted. Assisted

with various online and offline tools, e.g. regex101 [13], users

can find bugs in regular expressions through a set of test cases.

White-box testing is also discussed by a few researchers that

regular expressions can be visualized, for instance, as graph

structures [15], [29], [30]. Fabian et al. [14] also introduced

the approach that provides advanced visual highlighting of

matches in a sample text. However, these techniques rely on

test cases where the test set explosion problem still remains.

Another issue with white-box testing is that it relies on the

constructed regular expression which neglects the properties

that specified in the requirements.

Naturally, we think of verification techniques which check

the required properties based on mathematical proof but not

dynamic test cases. However, only a few studies have been

done on regular expressions. Existing papers mostly focus

on verification of the syntax level properties. Static program

analysis techniques like type systems [12] are adopted for

exception detection for regular expressions, e.g. IndexOutOf-

Bound, at the compile time. According to our knowledge, there

is no previous work on verifying semantic level properties for

regular expressions.

B. Formal Language Synthesis

Program synthesis has been widely used in many situa-

tions. These situations can all be called a specific domain

respectively, where program synthesis could take place. Maoz,

Ringert, and Rumpe [31] have solved the NP-hard synthesis

problem of the satisfied component and connector model in a

bounded scope under some specifications. Gulwani [32] pro-

poses a concrete case of program synthesis as an application

for the Microsoft spreadsheet. Singh, Gulwani, and Solar-

Lezama [33] show another case that program synthesis is

utilized as a method to generate feedback for some simple

coding assignments of the introductory programming courses.



Synthesis from natural language was proposed more than a

decade ago. In the past few years, researchers devoted more

effort to the domain-specific program synthesis, for instance,

shell scripts [34], network configuration file [22], games [34],

and regular expressions [35], [36] etc. They focus on how to

make less ambiguity in the program synthesis from a more

abstract language for different purposes.

VIII. CONCLUSION

We have presented a lightweight verification framework for

regular expressions in this paper. It is based on an equivalence

checking method between formal specifications and the target

regular expressions. To enhance the usability of the proposed

framework, we incorporated a specification synthesis module

which automatically generates specifications in formal lan-

guage from natural language descriptions of the requirements.

We have built a prototype for the proposed framework and

conducted case studies for evaluation. We have also made

our tool available and released the source code for public

dissemination.
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